Solving the BS PDE the Right Way

David Mandel

November 24, 2015

I'd like to give an alternative derivation of the Black-Scholes (BS) PDE not involving the clever (mystifying?) transformation to the heat equation and thus present a more general technique for solving constant coefficeint advectiondiffusion PDEs. All we need is the Fourier transform:

$$
\mathcal{F}[f](\omega)=\int_{-\infty}^{\infty} e^{-i \omega y} f(y) d y
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f \in L^{2}$.
We'll use the following well-known facts of the Fourier transform:

1. $\mathcal{F}\left[\frac{1}{s \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{y-m}{s}\right)^{2}\right)\right]=\exp \left(-i \omega m-s^{2} \omega^{2} / 2\right)$,
2. $\mathcal{F}\left[\frac{\partial^{n} f}{\partial y^{n}}\right]=(i \omega)^{n} \mathcal{F}[f]$,
3. $\mathcal{F}[c f]=c \mathcal{F}[f]$,
4. $\mathcal{F}[f * g]=\mathcal{F}[f] \mathcal{F}[g]$,
where the convolution $(f * g)(y)=\int_{-\infty}^{\infty} f(z) g(y-z) d z$.
Here's the BS PDE, stated without boundary or terminal conditions:

$$
\frac{\partial C}{\partial t}+\frac{\sigma^{2} S^{2}}{2} \frac{\partial^{2} C}{\partial S^{2}}+r S \frac{\partial C}{\partial S}-r C=0
$$

Step 1 Transform the PDE from forward in time to backward in time, which makes it well-posed. This is done by changing variables

$$
t \mapsto T-t=: \tau
$$

which which only affects the t-derivative term in that

$$
\frac{\partial C}{\partial t} \mapsto-\frac{\partial C}{\partial \tau} .
$$

Thus the forward-time PDE is

$$
\begin{equation*}
\frac{\partial C}{\partial \tau}=\frac{\sigma^{2} S^{2}}{2} \frac{\partial^{2} C}{\partial S^{2}}+r S \frac{\partial C}{\partial S}-r C \tag{1}
\end{equation*}
$$

Step 2 Transform the PDE from variable coefficient to constant coefficient. Starting with the PDE backward in time, make the change of variables

$$
S \mapsto \log S:=x,
$$

which results in the derivatives

$$
\begin{aligned}
\frac{\partial C}{\partial S} & =\frac{\partial C}{\partial x} \frac{1}{S} \\
\frac{\partial^{2} C}{\partial S^{2}} & =\frac{1}{S^{2}}\left(\frac{\partial^{2} C}{\partial x^{2}}-\frac{\partial C}{\partial x}\right)
\end{aligned}
$$

Plugging these into (1) we get

$$
\begin{aligned}
\frac{\partial C}{\partial \tau} & =\frac{\sigma^{2} S^{2}}{2} \frac{1}{S^{2}}\left(\frac{\partial^{2} C}{\partial x^{2}}-\frac{\partial C}{\partial x}\right)+r S\left(\frac{\partial C}{\partial x} \frac{1}{S}\right)-r C \\
& =\frac{\sigma^{2}}{2} \frac{\partial^{2} C}{\partial x^{2}}+\left(r-\frac{\sigma^{2}}{2}\right) \frac{\partial C}{\partial x}-r C
\end{aligned}
$$

Step 3 Take the Fourier transform of each term term above and solve the resulting separable ODE:

$$
\begin{aligned}
\frac{\partial \hat{C}}{\partial \tau} & =-\frac{\sigma^{2} \omega^{2}}{2} \hat{C}+i \omega\left(r-\frac{\sigma^{2}}{2}\right) \hat{C}-r \hat{C} \\
\hat{C} & =\hat{C}_{0} e^{-r \tau} \exp \left(-\frac{\sigma^{2} \omega^{2}}{2} \tau+i \omega\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)
\end{aligned}
$$

Step 4 Letting $m=\left(\frac{\sigma^{2}}{2}-r\right) \tau$ and $s=\sigma \sqrt{\tau}$ from the Fourier transform notation, note
$\exp \left(-\frac{\sigma^{2} \omega^{2}}{2} \tau+i \omega\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)=\mathcal{F}\left[\frac{1}{\sigma \sqrt{2 \pi \tau}} \exp \left(-\frac{1}{2}\left(\frac{x-\left(\frac{\sigma^{2}}{2}-r\right) \tau}{\sigma \sqrt{\tau}}\right)^{2}\right)\right]$,
so

$$
\begin{aligned}
\hat{C} & =\hat{C}_{0} e^{-r \tau} \mathcal{F}\left[\frac{1}{\sigma \sqrt{2 \pi \tau}} \exp \left(-\frac{1}{2}\left(\frac{x-\left(\frac{\sigma^{2}}{2}-r\right) \tau}{\sigma \sqrt{\tau}}\right)^{2}\right)\right] \\
& =\frac{1}{\sigma \sqrt{2 \pi \tau}} e^{-r \tau} \mathcal{F}\left[C_{0} * \exp \left(-\frac{1}{2}\left(\frac{x-\left(\frac{\sigma^{2}}{2}-r\right) \tau}{\sigma \sqrt{\tau}}\right)^{2}\right)\right] .
\end{aligned}
$$

Step 5 Take inverse transform:

$$
\begin{aligned}
& C(x, \tau)=\frac{1}{\sigma \sqrt{2 \pi \tau}} e^{-r \tau} \int_{-\infty}^{\infty} C_{0}(z) \exp \left(-\frac{1}{2}\left(\frac{x-z-\left(\frac{\sigma^{2}}{2}-r\right) \tau}{\sigma \sqrt{\tau}}\right)^{2}\right) d z \\
& C(x, \tau)=\frac{1}{\sigma \sqrt{2 \pi \tau}} e^{-r \tau} \int_{-\infty}^{\infty} C_{0}(z) \exp \left(-\frac{1}{2}\left(\frac{z-\left(x+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)}{\sigma \sqrt{\tau}}\right)^{2}\right) d z
\end{aligned}
$$

Step 6 Finally, change variables back $x \rightarrow S$, where we had $x=\log S$. Before we do this, note S is really the "initial" stock price in the usual sense, i.e. $S=S_{0}$, but to be consistent we'll stick with S as the initial (known) stock price. We'll also transform the z variable, suggestively calling it S_{T} by $S_{T}=e^{z}$.

$$
C(S, \tau)=\frac{1}{\sigma \sqrt{2 \pi \tau}} e^{-r \tau} \int_{0}^{\infty} C_{0}\left(S_{T}\right) \frac{1}{S_{T}} \exp \left(-\frac{1}{2}\left(\frac{\log S_{T}-\left(\log S+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)}{\sigma \sqrt{\tau}}\right)^{2}\right) d S_{T}
$$

Just note

$$
f\left(S_{T}\right):=\frac{1}{S_{T} \sigma \sqrt{2 \pi \tau}} \exp \left(-\frac{1}{2}\left(\frac{\log S_{T}-\left(\log S+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)}{\sigma \sqrt{\tau}}\right)^{2}\right)
$$

is the probability density function for a $\log \mathcal{N}\left(\log S+\left(r-\frac{\sigma^{2}}{2}\right) \tau, \sigma^{2} \tau\right)$ random variable, and under Black-Scholes, this is indeed the distribution of S_{T} under \mathbb{Q}. Hence

$$
C(S, \tau)=e^{-r \tau} \mathbb{E}_{\mathbb{Q}}\left[C_{0}\left(S_{T}\right) \mid \mathcal{F}_{t}\right]
$$

