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I'd like to give an alternative derivation of the Black-Scholes (BS) PDE
not involving the clever (mystifying?) transformation to the heat equation and
thus present a more general technique for solving constant coefficeint advection-
diffusion PDEs. All we need is the Fourier transform:
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We’ll use the following well-known facts of the Fourier transform:

1. F L\/lﬂ exp (—% (”;m)2>] = exp(—iwm — s2w?/2) ,

3. Flef] = ¢FIfl,

4. FIf * 9] = F[f1Flgl,

where the convolution (f * g)(y) = [ f(2)g(y — 2)d=.
Here’s the BS PDE, stated without boundary or terminal conditions:
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Step 1 Transform the PDE from forward in time to backward in time, which
makes it well-posed. This is done by changing variables

t—T—t=:T1,
which which only affects the ¢t-derivative term in that
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Thus the forward-time PDE is
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Step 2 Transform the PDE from variable coefficient to constant coefficient.
Starting with the PDE backward in time, make the change of variables

S—logS =z,

which results in the derivatives
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Plugging these into (1) we get
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Step 3 Take the Fourier transform of each term term above and solve the
resulting separable ODE:
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Step 4 Letting m = ("—2 — r) 7 and s = 0+/7 from the Fourier transform
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Step 5 Take inverse transform:
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Step 6 Finally, change variables back x — S, where we had = = logS.
Before we do this, note S is really the “initial” stock price in the usual sense,
i.e. S'= 5y, but to be consistent we’ll stick with S as the initial (known) stock
price. We’ll also transform the z variable, suggestively calling it St by St = €*.
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is the probability density function for a log A/ (log S+ (r - %

variable, and under Black-Scholes, this is indeed the distribution of S7 under
Q. Hence
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C(S, T) = C_TTEQ[C()(ST)‘]:A.



