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I’d like to give an alternative derivation of the Black-Scholes (BS) PDE
not involving the clever (mystifying?) transformation to the heat equation and
thus present a more general technique for solving constant coefficeint advection-
diffusion PDEs. All we need is the Fourier transform:

F [f ](ω) =

∫ ∞
−∞

e−iωyf(y)dy,

where f : R→ R and f ∈ L2.
We’ll use the following well-known facts of the Fourier transform:

1. F
[

1
s
√
2π

exp
(
− 1

2

(
y−m
s

)2)]
= exp(−iωm− s2ω2/2) ,

2. F
[
∂nf
∂yn

]
= (iω)nF [f ],

3. F [cf ] = cF [f ],

4. F [f ∗ g] = F [f ]F [g],

where the convolution (f ∗ g)(y) =
∫∞
−∞ f(z)g(y − z)dz.

Here’s the BS PDE, stated without boundary or terminal conditions:

∂C

∂t
+
σ2S2

2

∂2C

∂S2
+ rS

∂C

∂S
− rC = 0.

Step 1 Transform the PDE from forward in time to backward in time, which
makes it well-posed. This is done by changing variables

t 7→ T − t =: τ,

which which only affects the t-derivative term in that

∂C

∂t
7→ −∂C

∂τ
.
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Thus the forward-time PDE is

∂C

∂τ
=
σ2S2

2

∂2C

∂S2
+ rS

∂C

∂S
− rC. (1)

Step 2 Transform the PDE from variable coefficient to constant coefficient.
Starting with the PDE backward in time, make the change of variables

S 7→ logS := x,

which results in the derivatives

∂C

∂S
=
∂C

∂x

1

S
,

∂2C

∂S2
=

1

S2

(
∂2C

∂x2
− ∂C

∂x

)
.

Plugging these into (1) we get

∂C

∂τ
=
σ2S2

2

1

S2

(
∂2C

∂x2
− ∂C

∂x

)
+ rS

(
∂C

∂x

1

S

)
− rC

=
σ2

2

∂2C

∂x2
+

(
r − σ2

2

)
∂C

∂x
− rC.

Step 3 Take the Fourier transform of each term term above and solve the
resulting separable ODE:

∂Ĉ

∂τ
= −σ

2ω2

2
Ĉ + iω

(
r − σ2

2

)
Ĉ − rĈ,

Ĉ = Ĉ0e
−rτ exp

(
−σ

2ω2

2
τ + iω

(
r − σ2

2

)
τ

)
.

Step 4 Letting m =
(
σ2

2 − r
)
τ and s = σ

√
τ from the Fourier transform

notation, note

exp

(
−σ

2ω2

2
τ + iω

(
r − σ2

2

)
τ

)
= F

 1

σ
√

2πτ
exp

−1

2

x−
(
σ2

2 − r
)
τ

σ
√
τ

2

 ,

so

Ĉ = Ĉ0e
−rτF

 1

σ
√

2πτ
exp

−1

2

x−
(
σ2

2 − r
)
τ

σ
√
τ

2



=
1

σ
√

2πτ
e−rτF

C0 ∗ exp

−1

2

x−
(
σ2

2 − r
)
τ

σ
√
τ

2

 .
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Step 5 Take inverse transform:

C(x, τ) =
1

σ
√

2πτ
e−rτ

∫ ∞
−∞

C0(z) exp

−1

2

x− z −
(
σ2

2 − r
)
τ

σ
√
τ

2
 dz

C(x, τ) =
1

σ
√

2πτ
e−rτ

∫ ∞
−∞

C0(z) exp

−1

2

z −
(
x+

(
r − σ2

2

)
τ
)

σ
√
τ

2
 dz

Step 6 Finally, change variables back x → S, where we had x = logS.
Before we do this, note S is really the “initial” stock price in the usual sense,
i.e. S = S0, but to be consistent we’ll stick with S as the initial (known) stock
price. We’ll also transform the z variable, suggestively calling it ST by ST = ez.

C(S, τ) =
1

σ
√

2πτ
e−rτ

∫ ∞
0

C0(ST )
1

ST
exp

−1

2

 logST −
(

logS +
(
r − σ2

2

)
τ
)

σ
√
τ

2
 dST .

Just note

f(ST ) :=
1

STσ
√

2πτ
exp

−1

2

 logST −
(

logS +
(
r − σ2

2

)
τ
)

σ
√
τ

2


is the probability density function for a log N
(

logS +
(
r − σ2

2

)
τ, σ2τ

)
random

variable, and under Black-Scholes, this is indeed the distribution of ST under
Q. Hence

C(S, τ) = e−rτEQ[C0(ST )|Ft].
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